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Origami structures are mechanical metamaterials with properties that arise almost exclusively from the

geometry of the constituent folds and the constraint of piecewise isometric deformations. Here we

characterize the geometry and planar and nonplanar effective elastic response of a simple periodically

folded Miura-ori structure, which is composed of identical unit cells of mountain and valley folds with

four-coordinated ridges, defined completely by two angles and two lengths. We show that the in-plane and

out-of-plane Poisson’s ratios are equal in magnitude, but opposite in sign, independent of material

properties. Furthermore, we show that effective bending stiffness of the unit cell is singular, allowing us to

characterize the two-dimensional deformation of a plate in terms of a one-dimensional theory. Finally, we

solve the inverse design problem of determining the geometric parameters for the optimal geometric and

mechanical response of these extreme structures.
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Metamaterials are defined as materials whose structure
and constitution allows them to have unusual emergent
properties, such as negative refractive index optical
metamaterials [1], or negative Poisson ratio mechanical
metamaterials [2]. Here, we focus on origami-inspired
mechanical metamaterials that arise as folded and pleated
structures in a variety of natural systems including insect
wings [3], leaves [4], and flower petals [5]. Using the
presence of creases in these systems allows one to fold
and unfold an entire structure simultaneously and design
deployable structures such as solar sails [6] and foldable
maps [7], and auxetic structural materials such as foams
[8], and microporous polymers [9]. Indeed, folded sheets
with reentrant geometries serve as models for crystal struc-
tures [10,11], molecular networks [12], and glasses [2] in
a variety of physical applications. Complementing these
studies, there has been a surge of interest in the mathe-
matical properties of these folded structures [13–15], and
some recent qualitative studies on the engineering aspects
of origami [16–18]. In addition, the ability to create them
de novo without a folding template, as a self-organized
buckling pattern when a stiff skin resting on a soft founda-
tion is subject to biaxial compression [19–21] has opened
up a range of questions associated with their assembly
in space and time, and their properties. However, most
past quantitative work on these materials has been limited
to understanding their behavior in two dimensions, either
by considering their auxetic behavior in the plane, or the
bending of a one-dimensional corrugated strip. In this
Letter, we characterize the three-dimensional elastic
response, Poisson’s ratios, and rigidities of perhaps the
simplest suchmechanicalmetamaterial based on origami—
a three-dimensional periodically pleated or folded struc-
ture, the Miura-ori pattern, [Fig. 1(a)] which is defined
completely in terms of two angles and two lengths.

The geometry of the unit cell embodies the basic ele-
ment in all nontrivial pleated structures—the mountain
or valley fold, wherein four edges (folds) come together
at a single vertex, as shown in Fig. 1(d). It is parametrized
by two dihedral angles � 2 ½0; ��, � 2 ½0; ��, and one
oblique angle �, in a cell of length l, widthw, and height h.
We treat the structure as being made of identical periodic
rigid skew plaquettes joined by elastic hinges at the ridges.
The structure can deploy uniformly in the plane [Fig. 1(b)]
by having each constituent skew plaquette in a unit cell
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FIG. 1 (color online). Geometry of Miura-ori pattern. (a) A
Miura-ori plate folded from a letter size paper contains 13 by 13
unit cells (along x and y directions, respectively), with � ¼ 45�
and l1 ¼ l2 ¼ le. The plate dimension is 2L by 2W. (b) In-plane
stretching behavior of a Miura-ori plate when pulled along the x
direction shows it expands in all directions; i.e., it has a negative
Poisson’s ratio. (c) Out-of-plane bending behavior of a Miura-ori
plate when a symmetric bending moment is applied on bounda-
ries x ¼ �L shows a saddle shape, consistent with that, in this
mode of deformation, its Poisson’s ratio is positive. (d) Unit cell
of Miura-ori is characterized by two angles � and � given l1 and
l2 and is symmetric about the central plane passing through
O1O2O3.
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rotate rigidly about the connecting elastic ridges. Then
the ridge lengths l1, l2, and � 2 ½0; �=2� are constant
through folding or unfolding, so that we may choose �
(or equivalently �) to be the only degree of freedom that
completely characterizes a Miura-ori cell. The geometry of
the unit cell implies that

� ¼ 2sin�1½� sinð�=2Þ�; l ¼ 2l1�;

w ¼ 2l2� and h ¼ l1� tan� cosð�=2Þ;
(1)

where the dimensionless width and height are

� ¼ sin� sinð�=2Þ and � ¼ cos�ð1� �2Þ�1=2: (2)

We see that �, l, w, and h change monotonically as
� 2 ½0; ��, with � 2 ½0; ��, l 2 2l1½cos�; 1�, w 2
2l2½0; sin��, and h 2 l1½sin�; 0�. As � 2 ½0; �=2�, we
see that � 2 ½�; 0�, l 2 ½2l1; 0�, w 2 ½0; 2l2 sinð�=2Þ�,
and h 2 ½0; l1�. The geometry of the unit cell implies
a number of interesting properties associated with the
expansion kinematics of a folded Miura-ori sheet, includ-
ing design optimization for packing, and the study of
nearly orthogonal folds when � � �=2, the singular case
corresponding to the common map fold where the folds
are all independent (SI-1 in Supplemental Material [22]).
To minimize algebraic complexity and focus on the main
consequences of isometric deformations of these struc-
tures, we will henceforth assume each plaquette is a rhom-
bus, i.e., l1 ¼ l2 ¼ le.

The planar response of Miura-ori may be characterized
in terms of two quantities—the Poisson’s ratio which
describes the coupling of deformations in orthogonal direc-
tions, and the stretching rigidity which characterizes its
planar mechanical stiffness. The linearized planar
Poisson’s ratio is defined as

�wl � �dw=w

dl=l
¼ 1� ��2: (3)

It immediately follows that the reciprocal Poisson’s ratio
�lw ¼ 1=�wl. Because � � 1, the in-plane Poisson’s ratio
�wl < 0 [Fig. 2(a)]; i.e., Miura-ori is an auxetic material.
The limits on �wl may be determined by considering the
extreme values of �, �, since �wl monotonically increases
in both variables. Using the expression (2) in (3) and
expanding the result shows that �wlj�!0 � ��2, and thus,
�wlj� 2 ð�1;�cot2ð�=2Þ�, while �wlj�!0 � ��2 and,
thus, �wlj� 2 ð�1;�cot2��. When ð�; �Þ ¼ ð�=2; �Þ,
�wl ¼ 0 so that the two orthogonal planar directions
may be folded or unfolded independently, as in traditional
map folding. Indeed, this is the unique state for which
nonparallel folds are independent, and it might surprise
the reader that, with few exceptions, this is the way maps
are folded—makes unfolding easy, but folding frustrating!
The Poisson’s ratios related to height changes, �hl and
�wh can also be determined using similar arguments
(SI-2.1 in Supplemental Material [22]).

To calculate the in-plane stiffness of the unit cell,
we note that the potential energy of a unit cell deformed
by a uniaxial force fx in the x direction is H ¼
U� R

�
�0
fxðdl=d�0Þd�0, assuming that the elastic energy

of a unit cell is stored only in the elastic hinges which
allow the rigid plaquettes to rotate isometrically, with
U ¼ kleð�� �0Þ2 þ kleð�� �0Þ2, k being the hinge
spring constant, �0 and �0 ½¼ �ð�; �0Þ� being the natural
dihedral angles in the undeformed state. Then, the external
force fx at equilibrium is determined by the relation
�H=�� ¼ 0, while the stretching rigidity in the x direction
is given by

Kxð�;�0Þ�dfx
d�

���������0

¼ 4k½ð1��2
0Þ2þcos2��

ð1��2
0Þ1=2 cos�sin2�sin�0

; (4)

where �0 ¼ �ð�; �0Þ and � is defined in (2). To understand
the bounds on Kx, we expand (4) in the vicinity of the
extreme values of � and �0 which gives us Kxj�!0 � ��2,
Kxj�!�=2 � ð�=2� �Þ�1, Kxj�0!0 � ��1

0 , and Kxj�0!� �
ð�� �0Þ�1. As expected, we see that Kx has a singularity
at ð�; �0Þ ¼ ð�=2; �Þ, corresponding to the case of an
almost flat, unfolded orthogonal Miura sheet.
We note that Kx is not a monotonic function of the

geometric variables defining the unit cell, � and �0.
Setting @�0Kxj� ¼ 0 and @�Kxj�0 ¼ 0 allows us to

determine the optimal design curves, �0mð�Þ [green
dotted curve in Fig. 2(b)] and �mð�0Þ [red dashed curve
in Fig. 2(b)] that yield the minimum value of the stiffness
Kx as a function of these parameters. Along these curves,
the stiffness varies monotonically. Analogous arguments
allow us to determine the orthogonal stretching rigidityKy,

which is related geometrically to Kx via the design angles
� and � (SI-2.2, 2.3 in Supplemental Material [22]).
Since piecewise isometric deformations only allow for
planar folding as the only possible motion using rigid
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FIG. 2 (color online). In-plane stretching response of a unit
cell. (a) Contour plot of Poisson’s ratio �wl. �wl shows that
it monotonically increases with both � and �. �wlj� 2
½�1;�cot2��, and �wlj� 2 ½�1;�cot2ð�=2Þ�. (b) Contour
plot of the dimensionless stretching rigidity Kx=k. The green
dotted curve indicates the optimal design angle pairs that corre-
spond to the minima of Kxj�. The red dashed curve indicates the
optimal design angle pairs that correspond to the minima of
Kxj�0 . See the text for details.
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rhombus plaquettes in Miura-ori plates (SI-3.1 in
Supplemental Material [22]), the in-plane shear elastic
constant is infinite, an unusual result given that most
normal materials may be sheared easily and yet strongly
resist volumetric changes.

To understand the nonplanar bending response of Miura-
ori, we must consider the conditions when it is possible to
bend a unit cell isometrically, i.e., with only rotations of the
plaquettes about their linking hinges. Minimally, isometric
deformations require the introduction of one additional
diagonal fold into each plaquette [Fig. 3(a)], either a short
one (e.g.,O2O7) or a long one (e.g.,O1O8). Here, we adopt
the short fold, as a result of which four additional degrees
of freedom arise in each unit cell and allow for both
symmetric bending and asymmetric twisting, depending
on whether the rotations are symmetric or not. The out-
of-plane bending Poisson’s ratio �b � �	y=	x [23], where

	x, 	y are the effective curvatures of the Miura-ori sheet in

the x and y directions given by

	x ¼ cosð�=2Þ sinð�=2Þ
2le

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p ð
2 þ
4Þ;

	y ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
4le sinð�=2Þ� ð
2 þ
4Þ;

(5)

with 	x being the dihedral angle between plane O6O3O9

andO4O1O7 [Fig. 3(a)] projected onto the x direction over
the unit cell length (SI-3.2 in Supplemental Material [22]),
and 	y being the dihedral angle between plane O4O5O6

and O7O8O9 projected onto the y direction over the unit
cell width. The angles 
2, 
4 characterize rotations about

internal folds O7O2

!
and O8O3

!
, respectively, and are

deemed positive according to the right-hand rule. We
note that although there are a total of five deformation
angles [Fig. 3(a)], both 	x and 	y depend only on 
2 and


4. This is because of the symmetry of deformations about
the xoz plane; 
3 and 
5 are functions of 
1 and 
2

(Eq. S.28 in Supplemental Material [22]), and the case
that 
1 changes, while keeping 
2 and 
4 zero, corre-
sponds to the planar stretch of a unit cell, so 
1 does not
contribute to both curvatures. This is consistent with our
intuition that bending a unit cell requires the bending of
plaquettes. The Poisson’s ratio for bending, thus, is

�b ¼ �	y

	x

¼ �1þ ��2 ¼ ��wl; (6)

where the last equality follows from Eqs. (3) and (5). If the
original plaquettes are allowed to fold along the long
diagonals instead [e.g., O8O1 in Fig. 3(a)], the new
curvature components 	x and 	y are still given by (5)

with � being replaced by �� � (SI-3.3 in Supplemental
Material [22]), and 
2, 
4 now being rotations about

axis O8O1

!
and O9O2

!
, respectively. Therefore, �b ¼

�	y=	x ¼ ��wl. We note that in nonplanar bending, the

sheet behaves like a normal material, deforming into a
saddle as shown in Fig. 1(c). The surprising result, that
the in-plane Poisson’s ratio is equal in magnitude but
opposite in sign to the out-of-plane Poisson ratio, is inde-
pendent of the mechanical properties of the sheet and is a
consequence of geometry alone. Although our analysis is
limited to the case when the deformation involves only
small changes in the angles about their natural values, this
is not as restrictive as it seems, since small changes to the
unit cell can still lead to very large global deformations of
the entire sheet.
Given our understanding of the geometry of bending in a

unit cell, we now derive an effective continuum elastic
theory for a Miura-ori plate that consists of many unit
cells. Our calculations for the unit cell embodied in (5)
show that 	x=	y is only a function of the design angles �

and �, and independent of deformation angles; i.e., one
cannot independently control 	x and 	y. Physically, this

means that purely cylindrical deformations with zero
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FIG. 3 (color online). Out-of-plane bending response of a unit
cell. (a) The plaquettes deformations about each fold are sym-
metric about the plane O1O2O3, so that the angles 2
1, 
2, 
3,


4, and 2
5 correspond to rotations about the axes O1O2

!
,

O7O2

!
, O2O8

!
, O8O3

!
, and O3O2

!
, respectively. (b) Numerical

simulation of the bending of a Miura-ori plate with � ¼ 45� and
� ¼ 90�. Force dipoles are shown by yellow arrows. Color of the
folds indicates the value of deformation angles. (c) Contour plot
of dimensionless bending stiffness Bx=ðkleÞ corresponding to
pure bending of a unit cell. The green dotted curve and red
dashed curve indicate the optimal design angle pairs that corre-
spond to the local minima of Bxj� and Bxj�, respectively.
(d) Contour plot of bending Poisson’s ratio. The gray scale
plot is from the analytic expression (6) and the red curves are
extracted from simulation results. In our simulations, we use a
plate made of 21 by 21 unit cells and vary � from 20� to 70�, �
from 30� to 150� both every 10�.
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Gaussian curvature are impossible, as locally the unit cell
can only be bent into a saddle with negative Gaussian
curvature. In the continuum limit, this implies that the
effective stiffness matrix [24] of a two-dimensional
Miura-ori plate is singular, and has rank one. Thus, the
two-dimensional deformations of a Miura plate can be
described completely by a one-dimensional beam theory.

To calculate the bending stiffness per unit width of a
single cell in the x direction Bx, we note that the elastic
energy is physically stored in the eight discrete folds
[Fig. 3(a)] and thus, is expressed as kleð2
2

1þ
2
3þ2
2

5Þþ
2kplesinð�=2Þð
2

4þ
2
2Þ, where k and kp are the spring

constants of the ridges and the diagonal folds of plaquettes,
respectively. In an effective continuum theory, the energy
associated with the deformations of the unit cell when bent
into a sheet may be described in terms of its curvatures.
Thus, associated with the curvature 	x, the energy per unit
area of the sheet is ð1=2ÞBxwl	

2
x, where the effective

bending stiffness Bx is derived by equating the discrete
and continuous versions of the energy and inserting w, l
from (1) and 	x from (5). In general, Bx depends on
multiple independent deformation angles, but we start by
studying the ‘‘pure bending’’ case, where a row of unit
cells aligned in the x direction undergo the same deforma-
tion and stretching is constrained, i.e., 
1 ¼ 0 for all
cells so that 
2 ¼ 
4. In this well-defined limit,

3 ¼ ð1=2Þ
2 cscð�=2Þ½1� 2 cos�=ð1� �2Þ� and 
5 ¼
ð1=2Þ
2 cscð�=2Þ, so that

Bxð�; �Þ ¼ kle

�
2þ 16

kp
k
sin3

�

2
þ

�
1� 2 cos�

1� �2

�
2
�

	 cot

�
�

2

� ð1� �2Þ3=2
2�2 cos� sin� cosð�=2Þ : (7)

The bending stiffness per unit width of a single cell in the y
direction By is related to Bx via the expression for bending

Poisson’s ratio �2
b ¼ Bx=By, where �b is defined in (6). Just

as there are optimum design parameters that allow us to
extremize the in-plane rigidities, we can also find the
optimal design angle pairs that minimize Bx, by setting
@�Bxj� ¼ 0 and @�Bxj� ¼ 0. This gives us two curves
�mð�Þ and �mð�Þ shown in Fig. 3(c), where we have
assumed k ¼ kp. To understand the bounds on Bx, we

expand (7) in the vicinity of the extreme values of the
design variables � and � and find that Bxj�!0 � ��3,
Bxj�!�=2 � ð�=2� �Þ�1, and Bxj�!0 � ��3. We see

that Bxj�!� is bounded except when ð�; �Þ ¼ ð�=2; �Þ,
corresponding to the case of an almost flat, unfolded
orthogonal Miura sheet. Given the geometric relation
between Bx and By, we note that optimizing By is tanta-

mount to extremizing Bx.
The deformation response of a complete Miura-ori plate

requires a numerical approach because it is impossible to
assemble an entire bent plate by periodically aligning unit
cells with identical bending deformations in both the x and y

directions. Our numerical model takes the form of a simple
triangular-element based discretization of the sheet, in
which each edge is treated as a linear spring with stiffness
inversely proportional to its rest length. Each pair of adja-
cent triangles is assigned an elastic hinge with a bending
energy quadratic in its deviation from an initial rest angle
that is chosen to reflect the natural shape of the Miura-ori
plate. We compute the elastic stretching forces and bending
torques in a deformed mesh [25,26], assigning a scaled
stretching stiffness that is six orders of magnitude larger
than the bending stiffness of the adjacent facets, so that we
may deform the mesh nearly isometrically. When our nu-
merical model of a Miura-ori plate is bent by applied force
dipoles along its left-right boundaries, it deforms into a
saddle [Fig. 3(b)]. In this state, asymmetric inhomogeneous
twisting arises inmost unit cells; indeed this is the reason for
the failure of averaging for this problem, since different unit
cells deform differently, and we cannot derive an effective
theory by considering just the unit cell. This is in contrast
with the in-plane case, where the deformations of the unit
cell are affinely related to those of the entire plate. Our
results also show that themaximal stresses typically arise in
the middle of the Miura-ori plate, away from boundaries.
Thus, in a real plate, the vertices and hinges near the center
are likely to fail first unless they are reinforced.
We now compare our predictions for the bending

Poisson’s ratio �b of the one-dimensional beam theory
with those determined using full two-dimensional simula-
tions. In Fig. 3(d), we plot �b from (6) (the gray scale
contour plot) based on a unit cell and �b extracted at the
center of the bent Miura-ori plate from simulations (the red
curves). In the center of the plate where only symmetric
bending and in-plane stretching modes are activated, the
two approaches agree, but away from the center where this
symmetry is violated, this is no longer true.
Folded structures, mechanical metamaterials might be

named Orikozo, from the Japanese for folded matter. Our
analysis of the simplest of these structures is rooted in the
geometry of the unit cell as characterized by a pair of design
angles � and � together with the constraint of piecewise
isometric deformations. We have found simple expressions
for the linearized planar stretching rigidities Kx, Ky, and

nonplanar bending rigidities Bx and By, and shown that the

bending response of a plate can be described in terms of that
of a one-dimensional beam. Furthermore, we find that the in-
planePoisson’s ratio�wl < 0,while the out-of-planebending
Poisson ration �b > 0, an unusual combination that is not
seen in simple materials, satisfying the general relation
�wl ¼ ��l, a consequence of geometry alone. Our analysis
also allows us to pose and solve a series of design problems to
find the optimal geometric parameters of the unit cell that
lead to extrema of stretching and bending rigidities aswell as
contraction or expansion ratios of the system. This paves the
way for the use of optimally designed Miura-ori patterns in
three-dimensional nanostructure fabrication [27], and raises
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the possibility of optimal control of actuated origami-based
materials in soft robotics [28] and elsewhere using the simple
geometrical mechanics approaches introduced here.

We thank the Wood lab for help with laser cutting the
Miura-ori plates, the Wyss Institute and the Kavli Institute
for support, and Tadashi Tokieda for discussions and the
nomenclature Orikozo for these materials.

Note added in proof.—While our paper was under
review, an experimental engineering study on foldable
structures was published [29] consistent with our compre-
hensive theoretical and computational approach to the
geometry and mechanics of Miura-ori.
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